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The actin cytoskeleton plays a role in cell-cell adhesion but its specific function is not clear. Actin might
anchor cadherins or drive membrane protrusions in order to facilitate cell-cell adhesion. Using a mathematical
model of the forces involved in cadherin-based adhesion, we investigate its possible functions. The immersed
boundary method is used to model the cell membrane and cortex with cadherin binding forces added as linear
springs. The simulations indicate that cells in suspension can develop normal cell-cell contacts without actin-
based cadherin anchoring or membrane protrusions. The cadherins can be fixed in the membrane or free to
move, and the end results are similar. For adherent cells, simulations suggest that the actin cytoskeleton must
play an active role for the cells to establish cell-cell contact regions similar to those observed in vitro.
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I. INTRODUCTION

Cadherin-based adhesion is critical in assembling indi-
vidual cells into tissues. Initiation of cadherin-based adhe-
sion between cells results in dramatic changes in actin orga-
nization �1–4�. Actin rearrangements include the formation
of lamellae at or near the cell-cell contact, which have been
proposed to expand the area of adhesion between individual
cells �5,6�. Actin has also been thought to anchor engaged
cadherin complexes, limiting their diffusion and providing a
structural component that results in strong cell-cell adhesion
�7�. Recent work reconstituting cadherin-actin complexes
have called this assumption into question, however, as the
proposed cadherin-catenin-actin complex cannot be reconsti-
tuted �8,9�.

A general role for actin in cell-cell adhesion is well ac-
cepted. Perturbations in the actin cytoskeleton with drugs do
weaken cadherin-based adhesion between cells �10,11�.
Similarly, perturbations of many actin regulatory systems re-
sult in altered cell-cell junction morphology, and not surpris-
ingly, actin organization at cell-cell contacts �4,12–16�. How-
ever, studies identifying players in actin regulation at cell-
cell contacts do not address whether actin is required for
direct cadherin anchoring or expansion and maintenance of
the cell-cell contact area through actin-based membrane pro-
trusions or both. In fact, assessing these roles in isolation
from one another is experimentally challenging. How can
actin’s function in protrusion formation be perturbed without
altering other functions, such as cell-cell adhesion?

Here we use a mathematical model to examine the basic
biophysical parameters that must exist for cells to initiate and
expand their cell-cell junctions. The immersed boundary �IB�
method can be used to model individual cells that display an
elastic deformable cortex. Cells coated with cadherins adhere
to one another and will expand their junctions to a maximum
area. Using this method, we independently test the roles of

actin in cadherin anchoring or membrane protrusion forma-
tion in the expansion of cell-cell contacts to a maximum
cell-cell junction area.

Simulations using this model show that cadherin anchor-
ing is not necessary to expand nascent cell-cell contacts.
While membrane protrusions are not necessary to expand
cell-cell junctions for cells in suspension, models which
crudely mimic cells adhered to a substrate do not passively
expand nascent cell-cell contacts fully but do when mem-
brane protrusions occur at the boundary of the cell-cell con-
tact.

II. DESCRIPTION OF THE MATHEMATICAL MODEL

In our model we consider the forces exerted by cadherins,
a cell membrane along with its cortical shell, and the fluid
surrounding the cells. We will divide our discussion of the
model into two main areas—first, the representation of the
cell membrane, cortical shell, and the fluid; second, the treat-
ment of the cadherins. For the first part it is natural to use the
IB method �17�, which has been applied to a variety of bio-
logical fluid-structure interaction problems, including model-
ing of the cell with various degrees of complexity �18–20�.

A. IB method

In the IB method, the coupled equations of motion for one
or more elastic massless surfaces immersed in a viscous in-
compressible fluid are solved. The key idea of the IB method
is to model the effect of the surface by a suitable force den-
sity term in the fluid-dynamics equations; this allows a single
set of fluid-dynamics equations to hold in the entire domain
with no internal boundary conditions. Thus the surface exerts
forces on the fluid, and the motion of the fluid determines the
motion of the surface. The boundary is assumed to be mass-
less, so that all of the force generated by distortions of the
boundary is transmitted to the fluid. The boundary is mod-
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eled by a singular force, which is incorporated into the forc-
ing term, f, in the Navier-Stokes equations. The Navier-
Stokes equations are then solved to determine the fluid
velocity throughout the domain. Since the immersed bound-
ary is in contact with the surrounding fluid, its velocity must
be consistent with the no-slip boundary condition. Thus the
immersed boundary moves at the local fluid velocity. Let �
represent the immersed boundary surface, X�s , t� is the pa-
rametrized curve in R2 that specifies points on �, x is a point
in the domain �, u is the fluid velocity, p is the fluid pres-
sure, and t is time. The method is described by the following
set of equations:

F�s,t� = A�X,t� , �1�

f�x,t� = �
�

F�s,t��„x − X�s,t�…ds , �2�

�„ut + �u� · �u… = − �p + ��u + f , �3�

� · u = 0, �4�

dX�s,t�
dt

= u„X�s,t�,t… = �
�

u�x,t���x − X�s,t��dx . �5�

The operator A=M+C has two parts: the first, M, models
the cell membrane and cortex assuming that it behaves like
an object under elastic tension and the other part, C, adds the
force contributions due to binding cadherin pairs. The
boundary, fluid force, and velocity are related through Eqs.
�2� and �5�. Equations �3� and �4� are the incompressible
Navier-Stokes equations. We assume that the density, �, is
constant and � is the viscosity. Here � is the Dirac delta
distribution.

In our model there are two immersed boundaries which
represent the membrane and cortical shell of two cells. The
boundaries are discretized and represented by IB points. The
cells are filled with and surrounded by water. Of course it
would be more realistic to model the interior of the cell as a
more complex material, but the model framework we are
using only allows for one fluid. Due to this restriction, we
include a section on model verification, where it is shown
that the simulations can reproduce experimental evidence in
a different system with the same issue.

In our model the immersed boundary is a one-dimensional
representation of the two-dimensional cell membrane. The
elastic properties of a two-dimensional network are more
complex than those of a one-dimensional network. In a one-
dimensional elastic spring, one elastic parameter will charac-
terize the system, whereas in a two-dimensional system a
strain tensor describes the elastic properties of the system.
Assuming certain symmetries the strain tensor for a two-
dimensional elastic membrane can be characterized by a
shear modulus and an area compression modulus �21�. In our
formulation the shear of the membrane is determined by a
combination of the local stretching of the immersed bound-
ary and the internal fluid pressure. We assume that for cells
adhering in suspension, the membrane area of the cells does
not change. Thus we use shear moduli for our model to de-

termine the elastic properties of the immersed boundary. The
stretching of the immersed boundary can be interpreted as
the membrane becomes less flaccid locally.

The operator M is defined by assuming that the mem-
brane and cortex behave like an object under elastic tension.
For a boundary under tension, the strength of the force on the
boundary is given by

F�s,t� =
�

�s
„T�s,t���s,t�… , �6�

where T�s , t� is the tension at the given point and ��s , t� is the
tangent vector to the boundary at that point �see �22� for a
derivation�. The tangent vector is

��s,t� =
�X

�s ���X

�s
� . �7�

Assuming that the reference configuration represents an un-
stressed configuration, then � �X

�s �−1 represents the strain. If
we assume a Hooke law material so that the force is propor-
tional to the strain, then the tension is given by

T�s,t� = T0	��X

�s
� − 1
 . �8�

If we instead assume that the boundary is linearly elastic
with zero resting length �which we do not assume in this
paper�, then the tension becomes

T�s,t� = T0	��X

�s
�
 . �9�

In the latter case M simplifies to T0
�2

�s2 .
The discretized force operator is defined by

Fk
n = Mk

n + Ak
n, �10�

where the superscript denotes the time and the subscript de-
notes the immersed boundary point �see the Appendix for
more details�. The first part represents the membrane forces
as an elastic substance which obeys Hooke’s law. More spe-
cifically

Mk
n = �

i

kM��Xi
n − Xk

n� − �M�
1

�s

Xi
n − Xk

n

�Xi
n − Xk

n�
, �11�

where the sum is over all IB points connected to k, kM is the
spring constant for the membrane elasticity �for red blood
cells kM =14 �N /m �23,24� and for Madin-Darby canine
kidney �MDCK� cells kM =7 dyn /cm �25,26��, �M
=0.14 �m is the rest length of the springs, and �s
=0.156 �m is the initial separation of the immersed bound-
ary points. The initial separation of the immersed boundary
points is set to be slightly higher than the spring rest length
so the cell membrane will be under tension, causing it to be
circular in the absence of any other forces. Later in this paper
we will describe the operator Ak

n which models the forces
due to interacting cadherins.
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B. Numerical implementation

The Navier-Stokes equations are solved using a projection
method, meaning that Eq. �3� is first solved with an approxi-
mation to the pressure gradient while ignoring the incom-
pressibility constraint, and then a correction is performed
which involves solving a Poisson equation in order to en-
force the incompressibility constraint and obtain a more ac-
curate pressure approximation.

Due to the parameters in our system, �=1 g /cm3, �
=0.01 g / �s cm�, and the characteristic length is of the order
of microns, we can approximate the solution with a Stokes
flow, i.e., we replace Eq. �3� with

0 = − �p + �̄�u + f ,

where the variables have all been scaled appropriately. This
simplification also allows the Navier-Stokes solver to be re-
placed with three Poisson solves �one for the pressure, fol-
lowed by one for each of the velocity components�.

A comparison of numerical solutions of Stokes flow,
US�k1� and US�k2� calculated using two time steps 10k1=k2,
with solutions of the full Navier-Stokes equation, UN�k1� and
UN�k2�, verified that Stokes flow is a good approximation. If
we assumed that UN�k1� is accurate, we found that US�k2� is
a better approximation than UN�k2�, and US�k1� was almost
identical to UN�k1�. The theoretical analysis indicates that
Stokes flow should be a good approximation and the numeri-
cal results are consistent with this prediction. All the simu-
lations shown in this paper are solved using Stokes flow.

We have implemented a slightly modified interpolation
scheme in our immersed boundary implementation. The in-
terpolated velocity field specified by Eq. �5� will not in gen-
eral maintain the incompressibility of the fluid, which can
result in an observable volume loss during the course of the
simulation. We addressed this problem by introducing a cor-
rection to the interpolated velocity field which ensures that
the corrected velocity field satisfies a discrete incompress-
ibility condition. More details on the correction can be found
in �27� and the Appendix.

C. Cadherins

The cadherins are modeled as discrete complexes on the
cell membrane �the immersed boundary�. A complex can rep-
resent more than one cadherin, and more than one complex
can occupy the same location or site. The number of caherins
in a complex is the cadherin weight. Cadherin complexes
interact with cadherin complexes on the other cell and they
can move within the cell membrane. The locations of the
cadherin complexes or the sites of the cadherin complexes
are constrained to the IB points which define the membrane,
but cadherin complexes can move from point to point and

can accumulate at points. From now on in this paper we will
refer to a cadherin complex simply as a cadherin.

1. Cadherin motion

The cadherins can diffuse in the membrane and move due
to sustained directional forces �convective motion�. The dif-
fusive motion of the cadherins is modeled by a random walk
with the diffusion coefficient for an individual cadherin taken
to be 1�10−10 cm2 /s �28�. If the diffusive motion of a pair
of bound cadherins would cause them to separate and break
the bonds, the cadherins do not move. In Sec. IV we discuss
how varying the diffusion coefficient affects the system.

Any forces on the cadherin can cause a convective motion
within the membrane. We will assume that motion in the
membrane occurs at low Reynolds number and can be ap-
proximated by

F = 	v , �12�

where F is a force vector, 	 is the drag coefficient, and v is
the velocity of the cadherin. Of course, the motion is con-
strained so that the cadherin remains in the cell membrane.
We determine 	 from the Einstein relationship

D = �kT ,

where D is the diffusion coefficient, k is the Boltzmann con-
stant, T is the temperature �assumed to be 37 °C�, and � is
the mobility. At low Reynolds number, �= 1

	 . The motion is
determined in the model by projecting the forces on the cad-
herin onto a unit vector tangent to the cell membrane at the
position of the cadherin and averaging this force for the two
linked cadherins. Using Eq. �12� we determine the velocity
of the cadherin. We use Euler’s method to determine the
distance the cadherin should move. If it is greater than half
the distance to the next IB point, the cadherin moves. This
approximation is for simplicity and should result in making
the cadherins less mobile than normal. The distance between
the IB points in the model is variable, but for simplicity we
assume that it is constant and take the value to be the sepa-
ration given in the initial conditions.

2. Cadherin adhesions

We assume that a cadherin binds to only one cadherin on
the other cell. When a cadherin from one cell gets close
enough to a cadherin on the other cell they will interact and
bind to one another which means that they will exert forces
on each other. The interaction distance is taken to be 40 nm
�29� and the interaction force attains a maximum of 35 pN
per individual cadherin molecule when the cadherin sites are
40 nm apart �and the membranes have not crossed over each
other� �29�. The force is modeled as a linear spring when
stretched, and the discretized operator Ak

n is given by

Ak
n = �wkc��Xa

n − Xk
n� − �c�

1

�s

Xa
n − Xk

n

�Xa
n − Xk

n�
if cadherin is bound

0 otherwise,
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where w is the weight, kc=1.75 dyn /cm, �c=20 nm, Xk
n is

the location of the current cadherin, and Xa
n is the location of

the cadherin to which it is adhering. If the cell membrane
overlaps or if the cadherins become separated by more than
40 nm, the cadherins do not exert force.

III. MODEL VERIFICATION

Although our model treats the forces involved in cell-cell
adhesion in a more complex manner than most previous
models, the formulation of the cell membrane and cytoplasm
is simplistic. We use red blood cells to test the validity of our
model because their membrane dynamics and properties
have been widely studied �30�. Though red blood cells and
MDCK cells are vastly different from each other, their mem-
brane and cytoplasmic properties are equally different from
the model assumptions. The two model assumptions we are
referring to are making the cell membrane and the cortical
shell one elastic structure and assuming the cytoplasm has
the viscosity of water.

We simulated experiments where a red blood cell is de-
formed using optical tweezers �23�. For red blood cells the
spring constant for the membrane elasticity in our model is
kM =14 �N /m �23,24�. When a force of 340�10−12 N was
applied to the cell, it stretched 50% of its diameter in the
direction of the applied force and the diameter transverse to
the stretching direction was decreased by 40% �23,24�. In
those studies, the authors calculated shear moduli of
22.5 �N /m for low shear strains and 13.3 �N /m for high
shear strain from their theoretical model which match the
experimental data. The stretching occurred in 2–5 s. They
observe that a simple spherical model was not able to match
the change in diameters in both directions. Additionally they
noted that their membrane shear moduli values are larger
than those measured using micropipette aspiration experi-
ments �31�.

Our simulations matched experimental data using reason-
able parameters. We simulated a cell of diameter 10 �m
with a force of 340�10−12 N applied to each side using a
shear modulus of 14 �N /m �see Fig. 1�.

Within 6 s the cell had almost reached a steady state;
diameters were elongated by 52.4% parallel to the direction
of the force and reduced 29.3% in the transverse direction.
Most of the elongation occurred in the first 2 s. Although our
model formulation is very different from that used in the
experimental work, it mimics the elongation of the cell in the
correct time frame with similar parameter values. This gives
confidence that by changing the parameters of membrane
elasticity from those measured for red blood cells to those
measured for MDCK cells; we can accurately model MDCK
cells during cell-cell contact formation. The appropriate
spring constant for the membrane elasticity in our model for
MDCK cells is kM =7 dyn /cm �25,26�.

IV. RESULTS

We now describe the results of the computational simula-
tions. For simplicity, the simulations model two MDCK cells
in suspension adhering to each other, and interactions with a
substrate are not considered initially. In order to understand
the effects of cadherin motion within the membrane on the
length of cell-cell interaction, the first set of simulations has
cadherin which are fixed in the membrane. This is intended
to mimic the ability of the cytoskeleton to anchor the cad-
herins and restrict their movement in the membrane. Motion
within the membrane is added in later simulations by first
considering simple lateral diffusion, then convection of the
cadherins, and finally both diffusion and convection. In this
manner we can compare the differences that would occur if
the cell actively restricts the motion of cadherins in the mem-
brane or if the cadherins can freely move.

A. Cell-cell junctions in suspension

In order to determine the cellular morphology of the two
cells adhering in suspension, MDCK cells were placed in
suspension culture at 250 000 cells /ml in a 20 �l drop that
was suspended from the lid of a petri dish. Cells were al-
lowed to adhere to one another for 30 min before the drop
was spread on a microscope slide and images of paired cells
were recorded �Fig. 2�a��.

The length of a cell-cell junction, relative to the diameter
of each cell in a pair, was determined for 21 adherent pairs
using IMAGEJ �32�. The average ratio of the length of the
contact area of the cell-cell interaction and the cell diameter
in the experiments is 0.60 with a standard deviation of 0.10.

1. Stationary cadherin

In the first set of simulations the cadherin are fixed in the
membrane and not allowed to diffuse laterally. These simu-
lations are designed to test the effects of cells actively an-
choring the cadherins in the membrane, preventing them
from moving. For this model, Fig. 2�b� shows the initial
conditions and Fig. 2�c� shows a typical simulation after
60 s.

0 5 10 15 20
0
2
4
6
8
10
12
14
16
18
20

μm

μ
m

FIG. 1. Results of a simulation designed to mimic experiments
where red blood cells are stretched. The membrane is initially a
circle with a 10 �m diameter. The cell shape is shown 2 s after a
total force of 340�10−12 N is applied to a 2 �m arc on both the
right and left sides of the cell membrane. Over 99% of the elonga-
tion occurred within 2 s and steady state was basically reached
within 6 s. The time step in the explicit scheme is fixed at
1�10−5 s.
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The measurements of the stable contact length relative to
cell diameter in our model compare well with values deter-
mined for MDCK cells in suspension culture. The length of
the nascent cell-cell contact as a function of time is shown in
Fig. 3�a�, which demonstrates how the rate of contact expan-
sion is initially rapid and reaches a plateau phase as it ap-
proaches the maximal contact length.

In order to examine how increasing the number of cad-
herins at the membrane might alter contact expansion, we
increased the number of cadherin molecules for each cad-
herin complex on the membrane, the cadherin weight. Al-
though cells with an increased number of individual cadherin
molecules per complex reached a steady-state contact length
earlier, the final contact length was largely unaffected �see
Fig. 3�a��.

2. Cadherins with lateral diffusion

In order to assess how anchoring of cadherins contributes
to rapid cell-cell junction expansion, we ran a set of simula-
tions where cadherins were free to diffuse in the plane of the
membrane. All other parameters from simulations of fixed
cadherins were retained. Free lateral mobility of cadherins
did not affect the long-term contact length but did result in
an altered rate of cell-cell contact expansion. This seems to
be true for a large range of values for the diffusion coeffi-
cient. Surprisingly, the initial rate of contact expansion is
faster, as well as more saltatory �see Fig. 4�. The length of

the contact at plateau phase is between 0.6 and 0.7 of a cell
diameter, very similar to that of actual cells. We observe that
diffusible cadherins tend to cluster toward the boundary be-
tween the contacting and free membrane surfaces, resulting
in a significantly reduced level of cadherin density on the
membrane at the center of the contact, and particularly, just
outside the boundary of the contact �Fig. 5�.

This is natural since in the model it is assumed that the
force of diffusion does not break the cadherin-cadherin
bonds in this simulation. The break in the contact between
membranes acts like a barrier to diffusion until the mem-
branes move close enough for the cadherins to interact, re-
sulting in the accumulation at that boundary. The low-density
region results in an early slowing of contact expansion as
abutted membranes devoid of cadherins fail to adhere later in
the simulation. This situation could be overcome with local
deposition of newly synthesized or recycled cadherins.

3. Influence of convective forces on cadherins

We reasoned that a lack of convective forces in our model
involving mobile cadherins might give us unanticipated re-
sults. In order to address this we examined how such forces
altered cell-cell contact expansion. The convective forces de-
pend on the diffusion coefficient via the Einstein relationship
as stated previously. When convective forces were first added
to simulations with no lateral diffusion using a realistic dif-
fusion coefficient of 1�10−10 cm2 /s, the initial contact ex-
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FIG. 2. This figure shows in vitro cells adhering and results of a mathematical simulation of cells adhering. Part �a� shows a pair of
MDCK cells in suspension culture with a cadherin-based junction. In �b� the initial conditions of a typical simulation of adhering MDCK
cells is shown and in �c� the cell configuration after 60 s of simulated time is shown. In this simulation the cadherins are fixed in space and
each cadherin represents 100 individual cadherin molecules. The cadherin which are bound are denoted by an “X” and the cadherin which
are not bound are black dots.
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pansion was more rapid than with fixed cadherins but not
much different from diffusing cadherins without convective
forces �see Fig. 4�b��. The overall impact of allowing the
cadherins to move within the membrane does not affect the
final length of the contact region.

Interestingly, if the diffusion coefficient is higher, 7
�10−8 cm2 /s, allowing convection makes a more dramatic
difference. In the set of simulations shown in Fig. 6, adding

convection increases the rate at which the contact region
grows when compared to simulations with fixed or freely
diffusible cadherins without convective forces applied.

This seems to result from movement of bound cadherins
at the edge of the contact area. Bound cadherins at the inter-
face between the junction and the free surface exert larger
forces on the cell cortex. As these bound cadherins move
away from and then back toward the interface, a result of
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FIG. 3. �Color online� Simulation results where the weight of the cadherins are varied showing the length of the MDCK cell contact over
time. Part �a� is a graph of the contact length as it changes with time. Simulations with five individual cadherin molecules per complex are
shown in black, 50 individual cadherin molecules per complex are shown in red �medium gray�, and the rest are blue �dark gray�. In part �b�,
high magnification images of the interface between bound membranes and unbound membranes in frames from a simulation of laterally fixed
cadherins with 100 individual cadherin molecules per complex. Arrows represent the force vectors on the membrane. The two bound
cadherin adjacent to unbound cadherins have the associated force vectors colored red and the rest are blue. Notice how forces are greatest
near the interface but stabilize. In �b� the cadherins denoted by X are bound and cadherins denoted by black dots are unbound. For these
simulations there is no diffusion and no convection.
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FIG. 4. �Color online� Simulation results showing the change in length of the MDCK cell contact with time when cadherins are allowed
to move. In �a� the cadherins laterally diffuse in the membrane at different rates, resulting in little overall effect on the final contact length.
For the simulations shown in black the diffusion constant is 0, for red �medium gray� it is 1�10−12, for green �light gray� it is 1�10−10 �a
realistic value�, and for blue �dark gray or the top line� it is 1�10−6. In �b� simulations with fixed cadherins are shown in black, cadherins
which diffuse are shown in red �medium gray�, cadherins which convect are shown in green �light gray�, and cadherins which both diffuse
and convect are shown in blue �dark gray�. In �b� the diffusion rate is fixed at 1�10−10 cm2 /s. In these simulations the cadherin weight is
100. The simulation with the largest diffusion coefficient ended prematurely due to computational difficulties.
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convective forces, forces on the cell cortex are relaxed and
then suddenly reimposed at the interface. The result is a
membrane fluctuation that is driven past the interface and
onto the cell cortex of the free surface, causing in the free
membrane of apposed cells to be drawn together more
quickly �see Fig. 6�b��. Drawing apposed membranes into
closer proximity in this manner increases the likelihood of
cadherin-cadherin interactions occurring at areas adjacent to
the edge of the cell-cell contact. At plateau phase, the contact

length of the simulation with convection only was compa-
rable to that for models without convective forces.

We then tested at the higher diffusion rate whether addi-
tion of convective forces would reduce the ability of cells
with cadherins which laterally diffuse to expand cell-cell ad-
hesions. Surprisingly, adding both types of cadherin motion,
random diffusion and motion due to convective forces, re-
sulted in the contact length growing to a larger value than in
other simulations �see Fig. 6�a��. The rate of expansion was
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FIG. 5. �Color online� In this image the low density of cadherins near the cell-cell interaction region can be seen in a simulation with
laterally diffusing cadherins. The image in �b� is a blow up of the boxed region in �a�. The simulation has cadherin complexes weighted by
100. The time shown is 30 s into the simulation. The cadherins which are bound are denoted by an X, the cadherins which are not bound are
black dots, and the sites which are empty are denoted with an open circle.
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FIG. 6. �Color online� Simulation results showing the change in length of the MDCK cell contact with time when cadherins are allowed
to move in the membrane with a diffusion constant of 7�10−8. It is interesting that at higher diffusion rates the convection has a greater
impact on the contact length. In part �a� simulations with fixed cadherins are shown in black, cadherins which diffuse are shown in red
�medium gray�, cadherins which convect are shown in green �light gray�, and cadherins which both diffuse and convect are shown in blue
�the highest line�. In part �b� high magnification images of the interface between bound membranes and unbound membranes in frames from
a simulation with lateral cadherin motion due to convective forces only are shown. At t=2.4 s the bound cadherin pair has moved, relaxing
the forces at their previous location. At t=2.46 the cadherin pair has moved back and the forces are reapplied. This motion causes more
fluctuations in the membrane and a longer contact area sooner than in the case where the cadherins do not move or move with diffusion only.
In these simulations the cadherin weight is 100. In part �b� the simulation has convective forces acting on cadherins but no diffusion. The red
arrows represent the force vectors on the membrane. The cadherins denoted by X are bound, cadherins denoted by black dots are unbound,
and open circles denote IB points with no cadherins.
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both more rapid and more saltatory. The likely reason is that
engaged cadherin pairs that exert large forces at the contact-
ing and free membrane interface are freer to move laterally.
The result is that the loss and reimposition of large forces at
the interface is more pronounced, driving larger membrane
fluctuations through to the free membrane surface and bring-
ing the free membranes near the interface of apposing cells
together much more rapidly. A low density of cadherins is
observed in this region later in the simulation.

B. Simulations with high viscosity that model
cell-substrate adhesion

We then wondered how a model of cells adhering in sus-
pension conditions could be compared to those making con-
tact while already adhering to a substrate. A modification of
this model to consider a cell interaction with a substrate is to
increase the viscosity of the system �33–35�. The cell inter-
acts with the substrate via integrins, which bind and unbind
to the substrate. In a fluid, interaction between the molecules
is modeled by viscosity. Increasing the viscosity represents
increasing the strength of interaction between the molecules.
Increasing the viscosity does not directly increase the inter-
acting forces between the immersed boundary �the cell mem-
brane� and the fluid �substrate� but does increase the force
required to move the boundary in the fluid. Integrin binding
and unbinding increase the force required for the cell to
move, not unlike an increase in the forces of interacting mol-
ecules requires more force for an object to move through a
fluid. In simulations where the viscosity of the fluid is in-
creased by a factor of 104, the region of contact between the
two membranes did not grow beyond 2 �m within 400 h
with or without cadherin diffusion and convection.

We sought to examine how the cell overcomes this prob-
lem by focusing on the role of actin-based protrusions. Cells
on substrates demonstrate increased membrane protrusive ac-

tivity that is focused toward nascent cell-cell junctions �6�.
The stall forces of lamellipodia in keratocytes has been mea-
sured as 2 nN/�m2 �36�, and in our model a force of
0.2 nN/�m2 causes a protrusion of about 5 �m in length in
about 48 s. To mimic forces resulting from membrane pro-
trusions, a radial force of magnitude ranging from 0.02 to
0.2 nN/�m2, representing pseudopodial activity was applied
to the cell membrane on an arc of 1.4 �m away from the
interface between the contacting and free membranes of each
cell. In simulations with stationary cadherins weighted at 100
and where pseudopod forces are applied, the final contact
area increased to about 10 �m in 30 min �see Fig. 7� as the
force of the pseudopod increased. Simulations with freely
diffusible cadherins failed because pseudopods forced to-
gether apposed membranes devoid of cadherins, and without
adhesion, the membranes moved through each other and into
the adjacent cell. Taken together, these results suggest that
pseudopod activity is necessary to obtain the observed con-
tact length of cells on a substrate. The pseudopod extension
allows membranes to be forced into apposition long enough
for cadherins from opposite cells to bind and stabilize the
membrane contact.

V. DISCUSSION

Traditional understanding of cadherin-based adhesion is
founded on cadherin anchoring by actin filaments. Anchoring
is thought to restrict cadherin mobility and allow clustering
of cadherins on the cell surface. Recent evidence indicates
that the cadherin complex does not directly associate with
actin filaments �9�. Instead, cadherin complexes may direct
changes in local actin organization �8�. It remains unclear
how unanchored cadherin molecules with full lateral mobil-
ity in the membrane would be able to drive expansion of
cell-cell contacts. Here we present the results of a math-
ematical model of cell-cell junction expansion in cells with
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FIG. 7. �Color online� This image shows results from simulations for MDCK cells on substrate. In �a� the length of the contact region is
plotted in time for simulations with cadherins which are fixed in the membrane shown in black �the lowest line of dots�, cadherins which
laterally diffuse and move with convective forces shown in red �medium gray, mostly superimposed on the black�, fixed cadherins and
pseudopods exerting a force of 0.02 nN/�m2 are shown in green �light gray�, and fixed cadherins and pseudopods exerting a force of
0.2 nN/�m2 are shown in blue �the highest line of dots�. In �b� the cell membranes are shown for the simulation shown in blue in �a� at 30
min.
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variable cadherin mobility. While our initial hypothesis was
that full cadherin mobility would limit expansion of cell-cell
contacts beyond a single point of adhesion, results show that
full lateral mobility of cadherin complexes allow expansion
of the cell-cell junction. Application of convection forces at
the boundaries between cell-cell contacts and free membrane
surfaces does not reduce contact expansion. Surprisingly, fix-
ing cadherins by anchoring to actin filaments, as proposed in
traditional understanding of cell-cell adhesions, does not ap-
pear to be necessary for establishment of cell-cell junctions.
What, then, might be the role of actin in cell-cell adhesion?
Cells clearly demonstrate altered actin organization at cell-
cell contacts, and changes in actin dynamics are apparent as
epithelial cells initiate and establish cell-cell contacts �4,37�.
Increased membrane protrusions are observed at cell-cell
contact sites and have been proposed in facilitating rapid
expansion of the cell-cell contact �6�. Our model, however,
best represents cell-cell junction assembly between cells in
suspension, where limited membrane protrusion opportuni-
ties are likely to occur. In suspension, epithelial cells do
adhere and expand their junctions, though the maximum con-
tact length, as a function of cell diameter, is reduced com-
pared to substrate adherent cells. In our suspension model,
contact expansion rapidly reaches a plateau phase, a point
beyond which active membrane protrusion may be necessary.
Models of cell contact expansion in high viscosity medium
supports this idea. In such simulations contact expansion is
severely limited no matter how cadherin’s lateral diffusion
properties are varied or whether convective forces are
present. However, addition of protrusive forces at the bound-
aries of the cell-cell contact, mimicking those observed in
real cells �6�, allows rapid and complete contact expansion.
The results of this model indicate that a primary role of actin
in cell-cell contact formation may be expansion of the con-
tact length by formation of membrane protrusions.

Analysis of forces exerted on cadherin complexes reveal
that large forces appear in waves and usually at the boundary
between the contacting and free membranes of the cell-cell
contact. Forces along the length of the contacts are much
smaller. This is particularly apparent when convective forces
are added, which move cadherins in and out of the boundary
between the contacting and free membrane surfaces. The re-
sult is large force fluctuations at the interface that drive
adjacent-free membranes from apposed cells together. These
“forced” membrane protrusions increase the rate of cell-cell
contact expansion, particularly for cells with freely diffusible
cadherins. A role for membrane protrusion is further sup-
ported by our simulations of cells in a high viscosity condi-
tions designed to mimic substrate adhesion, where contact
expansion is severely limited. While neither convective
forces nor cadherin mobility allows increased contact expan-
sion, addition of membrane protrusive forces had a signifi-
cant effect, driving free membranes of contacting cells to-
gether and increasing both the rate of contact expansion and
the maximal contact length. These results indicate that focus-
ing membrane protrusions toward nascent cell-cell contacts
could be critical in establishment of cell-cell adhesions for
substrate adherent cells.

Interestingly, the interface between the contacting and
free membrane surfaces, the site of large force fluctuations,

shows dramatically different actin organization from the rest
of the cell-cell contact in real cells. A thin line of actin is
observed at the length of cell-cell contacts, while a thick
cable of filaments abuts the membrane at a near perpendicu-
lar angle at the ends of the contact �2�. Such different orga-
nizations may be critical in handling forces exerted during
contact expansion. Zyxin and VASP are localized to the ends
of such thick cables �4,16�, perhaps serving to link actin
filaments to membranes at these sites. Further, zyxin and
VASP have been recently implicated in remodeling actin in
response to stretch forces at actin cables that emanate from
focal adhesions �38�. Actin organization at cell-cell junctions
could be altered as a direct result of forces applied on points
of the cell-cell contact.

Here we directly address the role of cadherin anchoring in
establishment and expansion of cell-cell adhesions. Surpris-
ingly, cadherin mobility is not a factor in the majority of
cell-cell junction expansion. These results provide additional
evidence that traditional thinking about how actin contributes
to cell-cell adhesion must be re-evaluated.

APPENDIX

Numerical details

The most common temporal discretization of the equa-
tions describing the IB �immersed boundary� method is a
mixed explicit/implicit one, where the forces from the im-
mersed boundary and the advection terms in the Navier-
Stokes equations are treated explicitly while the viscous
terms are treated implicitly. The work involved in a time step
of such a method consists of five steps: �1� calculation of
forces on the immersed boundary, �2� spreading forces from
the immersed boundary to the Eulerian grid, �3� solving the
Navier-Stokes equations with the resulting Eulerian force,
�4� interpolating velocities from the Eulerian grid to the im-
mersed boundary, and �5� updating immersed boundary
points according to the interpolated velocity.

We use a superscript to denote the value of a variable at a
given time step; thus un�x�=u�x ,n�t� and Xn�s�=X�s ,n�t�.
Using this notation, temporally discretizing Eqs. �1�–�5� ac-
cording to the steps listed above using an explicit �forward
Euler� handling of all immersed boundary and an implicit
�Crank Nicholson� discretization of the viscous terms, we
obtain

Fn�s� = A fX
n�s� , �A1�

fn�x� = �
�

Fn�s��„x − Xn�s�…ds , �A2�

�
un+1 − un

�t
= − �pn+�1/2� − ���u · ��u�n+�1/2�

+
�

2
��un+1 + un� + fn, �A3�

� · un+1 = 0, �A4�
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Xn+1 − Xn

�t
= un+1

„Xn�s�… = �
�

un+1�x��„x − Xn�s�…dx .

�A5�

These equations are solved on a pair of computational
grids: a Cartesian grid for Eulerian variables and a discrete
set of points for the Lagrangian variables. An example setup
in two dimensions with a single immersed boundary curve
on a very coarse mesh is shown in Fig. 8.

Assuming that the lower-left corner of the domain is at
the origin, the coordinates of the ijth Eulerian grid point are
xij = (�i+ 1

2 ��x , �j+ 1
2 ��y). A pair of subscripts on a variable

denotes the location at which the Eulerian variable is being
evaluated; thus uij denotes the value of the variable u at the
ijth grid point. Lagrangian grid points are identified by a
single index, with variables at such grid points identified by
the corresponding index appearing as a subscript. Thus Fk
denotes the value of the variable F at the kth grid point. The
location of the kth Lagrangian grid point is explicitly tracked
in Xk�t�. The value �s is typically taken to be the initial
separation of the immersed boundary points if they are
evenly spaced.

The interaction between these grids, governed by integra-
tion against a delta function in the spatially continuous Eqs.
�A2� and �A5�, is handled by introducing a regularized dis-
crete delta function whose support is comparable to the mesh
spacing. The spatially discretized forms of Eqs. �A2� and
�A5� using this discrete delta function are

fij
n = �

k

Fk
n�h�xij − Xk

n��s , �A6�

Xk
n+1 − Xk

n

�t
= Uk

n+�1/2� = �
ij

uij
n �h�xij − Xk

n��x�y . �A7�

The discrete delta function appearing in Eqs. �A6� and
�A7� is derived from the requirement that a certain set of
properties be satisfied; these include ensuring that the entire
force is transmitted to the grid, that the force density on the
grid is a continuous function of the IB point locations, and
that the communication between Eulerian and Lagrangian
grids is very localized. We will use the delta function derived
in �39�,

�h�x,y� = �h�x��h�y� , �A8�

�h�x� = � 1

4h
�1 + cos	
x

2h

� �x� � 2h

0 �x� � 2h ,
 �A9�

where h=�x for the delta function in the x direction and h
=�y for the delta function in the y direction.

Because of the stencil width of 4h in the definition of the
delta function in Eq. �A9�, the force at any given immersed
boundary point affects only the Eulerian force density at the
16 nearest grid points. Because the force at an immersed
boundary point contributes to the Eulerian force density over
a nonzero area in the discrete equations, this operation is
known as the force spreading operation.

Equation �A7� is a simple interpolation operation and
works much like the spreading operator but in reverse; the
interpolated field at the immersed boundary point would be
an average of the surrounding values instead of being much
bigger than them all.

The Navier-Stokes equations, Eqs. �3� and �4�, are solved
using a projection method, meaning that Eq. �3� is first
solved with an approximation to the pressure gradient while
ignoring the incompressibility constraint, and then a correc-
tion is performed �which involves solving a Poisson equa-
tion� in order to enforce the incompressibility constraint and
obtain a more accurate pressure approximation. Equations
�3� and �4� are discretized with the following discrete ana-
logs of �, �·, �, and �u ·��:

��h · u�ij =
ui+1,j − ui−1,j

2�x
+

vi,j+1 − vi,j−1

2�y
, �A10�

��hp�ij = 	 pi+1,j − pi−1,j

2�x
,
pi,j+1 − pi,j−1

2�y

 , �A11�

��wide
h p�ij =

pi+2,j − 2pi,j + pi−2,j

4�x2 +
pi,j+2 − 2pi,j + pi,j−2

4�y2 ,

�A12�

��tight
h p�ij =

pi+1,j − 2pi,j + pi−1,j

�x2 +
pi,j+1 − 2pi,j + pi,j−1

�y2 ,

�A13�

FIG. 8. Example of discrete immersed boundary curve and un-
derlying discretized Eulerian grid.
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„�u · �h�c…ij = ui,j	 ci+1,j − ci−1,j

2�x

 + vi,j	 ci,j+1 − ci,j−1

2�y

 .

�A14�

Both discrete Laplacian operators are used, with the tight
stencil used for the viscous terms and the wide stencil used
for the intermediate Poisson solve in the projection �or “cor-
rection”� step.

As stated in text when solving the simpler equations for
Stokes flow, three Poisson solves are performed �one for the
pressure, followed by one for each of the velocity compo-
nents� �40�. The most straightforward discretization of M is
to write the force at an immersed boundary point as a differ-
ence in the tensions on either side of that point. Assuming a
single closed boundary with no external links, this can be
written as

Mk =
„Tk+1/2�t��k+1/2�t�… − „Tk−1/2�t��k−1/2�t�…

�s
�A15�

=
� T0

�s
„�Xk+1�t� − Xk�t�� − �0…

Xk+1�t� − Xk�t�
�Xk+1�t� − Xk�t��

�
�s

−
� T0

�s
„�Xk−1�t� − Xk�t�� − �0…

Xk−1�t� − Xk�t�
�Xk−1�t� − Xk�t��

�
�s

,

�A16�

where �0 is the resting length of the “springs” connecting
immersed boundary points. The reason for calling the con-
nection between immersed boundary points a spring in the
discrete set of equations is because of the form of Eq. �A16�;
T0 /�s serves as a spring constant, �Xi−Xk�−�0 is the length
by which the connection between IB points i and k has been
stretched, and �Xi−Xk� / �Xi−Xk� is a unit vector in the di-
rection of the connection, making this look just like Hooke’s
law spring.

Noting the similarity in the two terms of Eq. �A16�, we
can instead write the force as a sum over IB points connected
to the IB point k,

Mk = �
i

T0

�s
„�Xi�t� − Xk�t�� − �0…

1

�s

Xi�t� − Xk�t�
�Xi�t� − Xk�t��

.

�A17�

An additional advantage of writing in this manner is that it
also makes clear how to handle external links connecting
objects.

Gathering the temporal and spatial discretizations, the se-
quence of equations we solve is

Mk
n = �

i

T0

�s
��Xi

n − Xk
n� − �0�

1

�s

Xi
n − Xk

n

�Xi
n − Xk

n�
, �A18�

fij
n = �

k

Fk
n�h�xij − Xk

n��s , �A19�

�
uij

n+1 − uij
n

�t
= − ��hp�ij

n+�1/2� − ���u · �h�u�ij
n+�1/2�

+
�

2
„�h�un+1 + un�…ij + fij

n , �A20�

��h · un+1�ij = 0, �A21�

Xk
n+1 − Xk

n

�t
= �

ij

uij
n+1�h�xij − Xk

n��x�y . �A22�

In order to preserve the volume in the cells a correction to
the membrane velocity is added to enforce the divergence
free condition. At the membrane grid point i let ui denote the
velocity, ni is the unit normal vector, L is the arc length of
the membrane, and dsi be the arc length between grid point i
and i−1. The average outward velocity is calculated by

a =
1

L � ui · nidsi.

The velocity is then adjusted at each point on the mem-
brane by

ūi = ui − an̄i,

where ūi is the new velocity and n̄i is a unit vector which is
the average of the normal vectors for point i and the points
adjacent to it. Due to computational difficulties, membrane
points which are bound to the other cell are not included in
the average or the correction. The correction is linearly
ramped up from the edge of the region on the membrane of
cell-cell contact.
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